Hierarchical Porous Li2Mg(NH)2@C Nanowires with Long Cycle Life Towards Stable Hydrogen Storage
نویسندگان
چکیده
The hierarchical porous Li₂Mg(NH)₂@C nanowires full of micropores, mesopores, and macropores are successfully fabricated via a single-nozzle electrospinning technique combined with in-situ reaction between the precursors, i.e., MgCl₂ and LiN₃, under physical restriction upon thermal annealing. The explosive decomposition of LiN₃ well dispersed in the electrospun nanowires during carbothermal treatment induces a highly porous structure, which provides a favourable way for H₂ delivering in and out of Li₂Mg(NH) nanoparticles simultaneously realized by the space-confinement of the porous carbon coating. As a result, the thus-fabricatedLi₂Mg(NH)@C nanowires present significantly enhanced thermodynamics and kinetics towards hydrogen storage performance, e.g., a complete cycle of H2 uptake and release with a capacity close to the theoretical value at a temperature as low as 105°C. This is, to the best of our knowledge, the lowest cycling temperature reported to date. More interestingly, induced by the nanosize effects and space-confinement function of porous carbon coating, a excellently stable regeneration without apparent degradation after 20 de-/re-hydrogenation cycles at a temperature as low as 130°C was achieved for the as-prepared Li₂Mg(NH)₂@C nanowires.
منابع مشابه
Porous doped silicon nanowires for lithium ion battery anode with long cycle life.
Porous silicon nanowires have been well studied for various applications; however, there are only very limited reports on porous silicon nanowires used for energy storage. Here, we report both experimental and theoretical studies of porous doped silicon nanowires synthesized by direct etching of boron-doped silicon wafers. When using alginate as a binder, porous silicon nanowires exhibited supe...
متن کاملSelf-organized sheaf-like Fe3O4/C hierarchical microrods with superior lithium storage properties.
Functional nanomaterials with three-dimensional hierarchical structures are of high interest for many practical applications including lithium-ion batteries (LIBs). In this work, self-organized sheaf-like Fe3O4/C microrods constructed by porous nanowires have been synthesized by a facile solvothermal method combined with a subsequent annealing treatment. The morphology of the building blocks co...
متن کاملHierarchical porous NiCo2O4 nanowires for high-rate supercapacitors.
We demonstrate a simple and scalable strategy for synthesizing hierarchical porous NiCo(2)O(4) nanowires which exhibit a high specific capacitance of 743 F g(-1) at 1 A g(-1) with excellent rate performance (78.6% capacity retention at 40 A g(-1)) and cycling stability (only 6.2% loss after 3000 cycles).
متن کاملAtomic Scale Analysis of the Enhanced Electro- and Photo-Catalytic Activity in High-Index Faceted Porous NiO Nanowires
Catalysts play a significant role in clean renewable hydrogen fuel generation through water splitting reaction as the surface of most semiconductors proper for water splitting has poor performance for hydrogen gas evolution. The catalytic performance strongly depends on the atomic arrangement at the surface, which necessitates the correlation of the surface structure to the catalytic activity i...
متن کاملHydrogen-induced nanotunnel opening within semiconductor subsurface
One of the key steps in nanotechnology is our ability to engineer and fabricate low-dimensional nano-objects, such as quantum dots, nanowires, two-dimensional atomic layers or three-dimensional nano-porous systems. Here we report evidence of nanotunnel opening within the subsurface region of a wide band-gap semiconductor, silicon carbide. Such an effect is induced by selective hydrogen/deuteriu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 4 شماره
صفحات -
تاریخ انتشار 2014